A Dual-Polarized, Dual-Frequency, Corrugated Feed Horn for SMAP Paolo Focardi & Paula Brown Jet Propulsion Laboratory, California Institute of Technology 2012 IEEE International Symposium on Antennas and Propagation Chicago, IL July 10th, 2011 Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. #### **Outline** - Overview of the Soil Moisture Active and Passive (SMAP) Mission & Instrument - Basic Layout of SMAP "E" Configuration - Feed Horn Components - Major Design Drivers & Requirements - Thermal and Alignment Tolerances - OMT Split Design - SMAP Scale Model - RL & Pattern Measurements - Conclusions #### Mission Overview - NASA's Soil Moisture Active and Passive (SMAP) mission will measure Earth's soil moisture and its freeze/thaw state over a 3 year period - Applications: - More accurate and longer-term weather and climate predictions - Earlier drought warnings - Improved flood and landslide predictions - Improved agricultural production predictions - Better understanding of the global carbon cycle - Near-polar, sun-synchronous orbit of 680 km - Planned launch date of November 2014 #### **Instrument Overview** - An L-band Synthetic Aperture Radar (SAR) and L-band radiometer (RAD) share an offset 6-m deployable mesh reflector and feed - The antenna boresight beam is pointed 35.5° off nadir - The instrument spins at approximately 14.6 RPM around the nadir axis - The result is a 1000-km swath on the ground - The radiometer data is more accurate than the SAR data, but has a spatial resolution of about 40-km; the SAR spatial resolution is 1 – 3 km # SMAP "E" Configuration ## **Isometric View** # **Cut-away Isometric View** ## Waveguide to Coax Adapter (WCA) Detail # WCA Prototype Measurement # WCA Prototype being tested with WR650 Cal Kit #### Major Design Drivers & Requirements - Combined SAR & RAD RF bandwidth of 16% - Radiometer beamwidth & main beam efficiency - RAD Beamwidth between 2.29° and 2.5° - RAD MBE > 87% - SAR Beamwidth < 2.8° - Radiometer antenna pattern stability - RAD Earth Lobe power < 3% - RAD off-Earth Lobe power < 10% - SAR gain and gain stability - SAR Gain > 35.55 dBi - SAR Gain stability < 0.07 dB - SAR pointing stability - 50 m° ± 40 m° in Elevation - 0 m° ± 10 m° in Azimuth # Thermal & Alignment Tolerances # NAS #### Worst Case Thermal + Alignment Tolerances ### Split OMT Tolerance Performance # SMAP Flight Model ## **SMAP Scale Model** # **SMAP Complete Scale Model** ## Scale Model Feed #### Return Loss Measurements # Radiation Pattern Measurement #### Close-up of the Scale Model Feed Horn # **Scale Model Feed Horn on Antenna Range Positioner** ## Scale Model Feed Horn with Absorber in Place ## SAR V-pol Scale Model Pattern #### RAD V-pol Scale Model Pattern # Flight Feed Horn RL #### Feed Horn RL into SM OMT #### Conclusions - A dual-polarized, dual-frequency, corrugated feed horn for SMAP was designed and meets all mission requirements - A scaled model of the feed was fabricated and tested showing an excellent agreement with predicted performance - These results along with the "tunability" built-in into the flight model make us feel confident that the flight model will meet all mission requirements # Thank you! # Back-Up ## **SMAP Instrument** #### **Flight Model** ## **RF Models** #### Flight RF Model #### **Scale Model RF Model** # **SMAP Flight Instrument** ## **SMAP Scale Model Instrument** # Radome